어학교육원

  • Goal 1. 빈곤 퇴치
  • Goal 2. 기아 종식
  • Goal 3. 건강과 웰빙
  • Goal 4. 양질의 교육
  • Goal 5. 성 평등
  • Goal 6. 물과 위생
  • Goal 7. 클린 에너지
  • Goal 8. 양질의 일자리와 경제 성장
  • Goal 9. 산업, 혁신 및 인프라
  • Goal 10. 불평등 감소
  • Goal 11. 지속가능한 도시와 공동체
  • Goal 12. 지속가능한 소비 및 생산
  • Goal 13. 기후변화 대응
  • Goal 14. 해양 생태계 보존
  • Goal 15. 육상 생태계 보존
  • Goal 16. 평화, 정의, 효과적인 제도
  • Goal 17. 목표를 위한 협력

Goal 7. 클린 에너지

SDG 7. 클린 에너지 게시글의 상세 화면
(7.4.4) 아주대학교 서형탁 교수팀, 수소 연료 생산 위한 신개념 태양광 물분해 광전극 개발
제목 (7.4.4) 아주대학교 서형탁 교수팀, 수소 연료 생산 위한 신개념 태양광 물분해 광전극 개발
등록일 2021-11-24 조회수 101
첨부파일
아주대학교 서형탁 교수(신소재공학과·대학원 에너지시스템학과) 연구팀이 수소 연료 생산을 위한 물 분해 광전극을 단일 소재를 이용해 개발하는 데 성공했습니다. 무공해 방식으로 수소 연료를 생산할 수 있는 저비용 고효율 광전극으로 활용될 수 있을 것으로 보입니다. 
 
 
서형탁 교수팀은 기존에 널리 연구되어 왔으나 효율 향상 한계에 봉착했던 텅스텐 산화물(WO3) 광전극에 주목했습니다. 서 교수팀은 다른 소재를 추가한 이종 적층 구조를 쓰지 않고 단일 소재에 소량(1.14%)의 이트리움(Y)을 ‘도핑’할 경우 1차원 텅스텐 산화물 나노로드의 결정 방향이 광화학적으로 활성이 높은 {002}면에 대하여 정렬된다는 점을 발견해 냈습니다. 연구진은 최적 도핑 농도 및 공정 확보를 위해 수십 가지 경우의 불순물 농도를 검증, 최적 조건을 찾아냈습니다. 
 
연구팀은 최적 조건으로 이트리움(Y)이 도핑된 텅스텐 산화물(WO3)에서 광전류가 200% 가량 대폭 향상되며, 촉매에 흡수된 빛에 의한 광전류의 수소 전환 효율은 95%에 이른다는 점을 확인했다. 그 밖에도 극소량의 도핑으로도 저항 감소, 전자구조 변화, 표면일함수 변화 등 다양한 물리·화학적 특성이 달라질 수 있음을 확인했습니다. 
 
서형탁 교수는 “저가의 텅스텐 산화물에 극소량의 불순물 도핑을 통해 고효율 단일소재 기반의 나노구조 광전극 제조에 성공한 사례”라며 “이를 통해 최고 수준의 전환 효율로 수소를 생산할 수 있음을 확인했고, 앞으로 안정성을 더욱 개선해 실용화를 목표로 연구를 이어 가겠다”고 말했습니다. 
 
이번 연구는 과학기술정보통신부·한국연구재단 주관 기초연구지원사업(기본)의 지원과 해외우수신진인력지원사업의 지원으로 수행됐습니다. 
 
자세한 내용은 하단 링크를 참조해 주세요.
 
<관련 내용>
서형탁 교수팀, 수소 연료 생산 위한 신개념 태양광 물분해 광전극 개발(2021.05.14.)
 
  • 목록 인쇄[새창열림]
아주대학교